The generator matrix

 1  0  0  1  1  1  1  1  1  X  1  1  3  1  1 X+6  1  1  1 X+6  1 2X+6 2X+3  1 2X+6  1  1 X+6  1 2X  1  X  1  1  1  1  1  1  3  1  1  1  1  1  1  3  6  1 X+6  1  1  6  1  1 X+3  6  1  1  3  1  1  1  1
 0  1  0  0  3 2X+7  5  8 X+8  1  1 2X+4  1 X+6 2X+5  1  1 2X+6 2X+7  1 2X  3  1 2X+8  1 2X+5 X+4  X 2X+3  1  5  1 X+8  6  7 2X+2 2X+4  X 2X+6  X X+3 2X+6  2  1 2X+2  1  1 2X+1 2X+3  3 2X+7  1 2X+8  6  1  1  3 X+5  X X+7  X  8 X+1
 0  0  1 2X+7  5  2 X+5  0  1 2X+1 2X+4 2X  2 2X+6 2X+4  2  X 2X+7 X+4 X+1 2X+8  1  6 2X+6  7 X+2 X+5  1 X+7 X+2 2X+8 2X  6 X+2  3  1 X+1  7  1 2X+7  2 2X X+6  1  7  0 X+4 2X+2  1 2X+5  5  4 2X+8 X+2  5 2X+8 X+3 2X+7  1 X+3 X+7 X+7 2X+3
 0  0  0  6  6  6  6  6  6  0  6  6  0  6  3  6  0  3  3  3  0  3  6  3  6  0  3  6  0  3  3  3  0  3  3  0  0  0  3  6  0  3  3  3  6  6  6  0  6  3  3  3  3  6  3  0  0  3  3  3  6  3  3

generates a code of length 63 over Z9[X]/(X^2+6,3X) who�s minimum homogenous weight is 118.

Homogenous weight enumerator: w(x)=1x^0+684x^118+1326x^119+2198x^120+2940x^121+4092x^122+4308x^123+5472x^124+5676x^125+6040x^126+5634x^127+5106x^128+4920x^129+3804x^130+3012x^131+1390x^132+1278x^133+642x^134+322x^135+72x^136+42x^137+10x^138+24x^139+24x^140+8x^141+18x^142+6x^146

The gray image is a code over GF(3) with n=567, k=10 and d=354.
This code was found by Heurico 1.16 in 20.1 seconds.